ABH103 : È®·ü·Ð(Probability Theory)
´ã´ç±³¼ö : Àå Àç½Å, À念½Ç°ü (Eµ¿) 515È£, T.3520, icjoseph@inje.ac.kr
´ã´çÁ¶±³ :
°Àǽð£ :
Office Hours :
°ÀÇÁÖÁ¦ : Random variable, Random function, Random processes, Probability theory
¼±¼ö ±ÇÀ¯ °ú¸ñ : ABH163(°ø¾÷¼öÇÐ1), ABH164(°ø¾÷¼öÇÐ2)
±³Àç : Oliver C. Ibe, Fundamentals of Applied Probabilities and Random Processes, AP
Chapter º° °Àdz»¿ë :
Chapter 1 : Basic Probability Concepts
Sample space, Events, Properties of probability, Conditional probability, Independent events.
Chapter 2 : Random Variables
Definition of random variables, Discrete random variables, Continuous random variables.
Chapter 3 : Moments of Random Variables
Expectation, Moments, Conditional expectations, Various inequalities
Chapter 4 : Special Probability Distributions
Fourier Bernoulli distribution, Binomial distribution, Geometric distribution, Pascal distribution, Hypergeometric distribution, Poisson distribution, Erlang distribution, Uniform distribution, Normal distribution.
Chapter 5 : Multiple Random Variables
Fourier Joint CDFs of bivariate random variables, Covariance and Correlation, Multinomial distribution.
Chapter 6 : Functions of Random Variables
Fourier Functions of one random variable, Sums of independent random variables, Minimum (or Maximum) of two independent random variables, Two functions of two random variables, Central limit theorem.
Chapter 8 : Introduction to Random Processes
Fourier Classification of random processes, Characterizing a random processes, Crosscorrelation and Crosscovariance functions, Stationary random processes, Erogodic random processes. Power spectral density.
Homeworks : ¸Å Chapter º° ¼±º°µÈ ¿¬½À¹®Á¦,
Æò°¡¹æ¹ý : Ãâ¼®(5%), °úÁ¦¹°(10%), ¼ö¾÷Âü¿©µµ(Quiz Æ÷ÇÔ)(5%), Áß°£°í»ç(40%), ±â¸»°í»ç(40%)
±âŸ ÁÖÀÇ»çÇ× :
Ưº°ÇÑ »çÀ¯¾øÀÌ 15½Ã°£ ÀÌ»ó °á¼®Çϸé FÇÐÁ¡ 󸮵Ê